Global trends in GHG emission
2 min readFeb 3, 2024
In this blog post, we will explore and visualize global trends in GHG emissions using open-access datasets. The results will continue to be updated as new data become available.
Per capita GHG emission by continent
df %>%
select(region, `1970`:`2022`) %>%
pivot_longer(cols = -region, names_to = "Year", values_to = "Value") %>%
mutate(Year = as.numeric(Year)) %>%
group_by(region, Year) %>%
summarise(Value = mean(Value)) %>%
ggplot(aes(x = Year, y = Value, color = region, group = region)) +
geom_line() +
labs(x = " ",
y = "GHG per capita") +
theme_minimal() +
theme(panel.grid = element_blank(),
legend.title = element_blank(),
legend.position = 'bottom')
Mean GHG emissions by type and continent
ghr %>%
filter(country %in% c("Africa", "Americas", "Asia", "Europe", "Oceania", "World")) %>%
ggplot(aes(x = year, y = mean_value, fill = gas_type)) +
geom_bar(stat = "identity") +
labs(x = "", y = "") +
scale_fill_manual(values = c('#A3BE8C', "#4C566A", "#81A1C1", "#B48EAD", "#D8DEE9")) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
theme(panel.grid = element_blank(),
legend.title = element_blank(),
legend.position = 'bottom') +
facet_wrap(~country)
Global mean GHG emissions by gas types
ghr %>%
filter(country %in% c("World")) %>%
ggplot(aes(x = year, y = mean_value, fill = gas_type)) +
geom_bar(stat = "identity") +
labs(x = "", y = "") +
theme_minimal() +
theme(panel.grid = element_blank(),
legend.title = element_blank(),
legend.position = 'bottom',legend.text = element_text(size = 8)) + guides(fill = guide_legend(ncol = 5))
Mean greenhouse gas emissions by gas type and sectors
ghr %>%
filter(country %in% c("World")) %>%
ggplot(aes(x = year, y = mean_value, fill = industry)) +
geom_bar(stat = "identity") +
labs(x = "", y = "") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 90)) +
theme(panel.grid = element_blank(),
legend.title = element_blank(),
legend.position = 'bottom',legend.text = element_text(size = 8)) +
facet_wrap(~gas_type)+
guides(fill = guide_legend(ncol = 2))
Data source